
Kapan Finance - Lending
Aggregator
SECURITY ASSESSMENT REPORT
September 2, 2025

Prepared for Kapan Finance

CODESPECT

Contents

1 About CODESPECT 2

2 Disclaimer 2

3 Risk Classification 3

4 Executive Summary 4

5 Audit Summary 5
5.1 Scope - Audited Files . 5
5.2 Findings Overview . 5

6 System Overview 6

7 Issues 7
7.1 [High] Certain combinations of instructions can lead to token loss . 7
7.2 [High] Vesu Gateway uses the same default pool ID for every withdrawal . 8
7.3 [Medium] Certain instruction combos create negative balancesAfter and will revert . 9
7.4 [Medium] Repay may fail due to insufficient tokens approval . 10
7.5 [Medium] The on_flash_loan(...) function lacks a caller verification check . 10
7.6 [Low] Nostra positions are not getting tracked correctly . 11
7.7 [Low] The on_flash_loan(...) function does not take the repay_all flag into account when handling the repay instruction . 12
7.8 [Low] get_flash_loan_amount(...) may fail to return the correct amount . 13
7.9 [Best Practice] Revoke excess approvals in after_send_instructions(...) . 14
7.10 [Best Practice] Some transfers don’t confirm the return boolean . 14

8 Additional Notes 15

9 Evaluation of Provided Documentation 16

10 Test Suite Evaluation 17
10.1 Compilation Output . 17
10.2 Tests Output . 18
10.3 Notes about Test suite . 18

1

CODESPECT

1 About CODESPECT

CODESPECT is a specialized smart contract security firm dedicated to ensure the safety, reliability, and success of
blockchain projects. Our services include comprehensive smart contract audits, secure design and architecture consul-
tancy, and smart contract development across leading blockchain platforms such as Ethereum (Solidity), Starknet (Cairo),
and Solana (Rust).

At CODESPECT, we are committed to build secure, resilient blockchain infrastructures. We provide strategic guidance and
technical expertise, working closely with our partners from concept development through deployment. Our team consists
of blockchain security experts and seasoned engineers who apply the latest auditing and security methodologies to help
prevent exploits and vulnerabilities in your smart contracts.

Smart Contract Auditing: Security is at the core of everything we do at CODESPECT. Our auditors conduct thorough
security assessments of smart contracts written in Solidity, Cairo, and Rust, ensuring that they function as intended without
vulnerabilities. We specialize in providing tailored security solutions for projects on EVM-compatible chains and Starknet.
Our audit process is highly collaborative, keeping clients involved every step of the way to ensure transparency and security.
Our team is also dedicated to cutting-edge research, ensuring that we stay ahead of emerging threats.

Secure Design & Architecture Consultancy: At CODESPECT, we believe that secure development begins at the design
phase. Our consultancy services offer deep insights into secure smart contract architecture and blockchain system design,
helping you build robust, secure, and scalable decentralized applications. Whether you’re working with Ethereum, Starknet,
or other blockchain platforms, our team helps you navigate the complexity of blockchain development with confidence.

Tailored Cybersecurity Solutions: CODESPECT offers specialized cybersecurity solutions designed to minimize risks
associated with traditional attack vectors, such as phishing, social engineering, and Web2 vulnerabilities. Our solutions are
crafted to address the unique security needs of blockchain-based applications, reducing exposure to attacks and ensuring
that all aspects of the system are fortified.

With a focus on the intersection of security and innovation, CODESPECT strives to be a trusted partner for blockchain
projects at every stage of development and for each aspect of security.

2 Disclaimer

Limitations of this Audit: This report is based solely on the materials and documentation provided to CODESPECT for
the specific purpose of conducting the security review outlined in the Summary of Audit and Files. The findings presented
in this report may not be comprehensive and may not identify all possible vulnerabilities. CODESPECT provides this review
and report on an "as-is" and "as-available" basis. You acknowledge that your use of this report, including any associated
services, products, protocols, platforms, content, and materials, is entirely at your own risk.

Inherent Risks of Blockchain Technology: Blockchain technology is still evolving and is inherently subject to unknown
risks and vulnerabilities. This review focuses exclusively on the smart contract code provided and does not cover the
compiler layer, underlying programming language elements beyond the reviewed code, or any other potential security risks
that may exist outside of the code itself.

Purpose and Reliance of this Report: This report should not be viewed as an endorsement of any specific project or
team, nor does it guarantee the absolute security of the audited smart contracts. Third parties should not rely on this report
for any purpose, including making decisions related to investments or purchases.

Liability Disclaimer: To the maximum extent permitted by law, CODESPECT disclaims all liability for the contents of
this report and any related services or products that arise from your use of it. This includes but is not limited to, implied
warranties of merchantability, fitness for a particular purpose, and non-infringement.

Third-Party Products and Services: CODESPECT does not warrant, endorse, or assume responsibility for any third-party
products or services mentioned in this report, including any open-source or third-party software, code, libraries, materials,
or information that may be linked to, referenced by, or accessible through this report. CODESPECT is not responsible
for monitoring any transactions between you and third-party providers. We strongly recommend conducting thorough due
diligence and exercising caution when engaging with third-party products or services, just as you would for any other
product or service transaction.

Further Recommendations: We advise clients to schedule a re-audit after any significant changes to the codebase to
ensure ongoing security and reduce the risk of newly introduced vulnerabilities. Additionally, we recommend implement-
ing a bug bounty program to incentivize external developers and security researchers to identify and disclose potential
vulnerabilities safely and responsibly.

Disclaimer of Advice: FOR AVOIDANCE OF DOUBT, THIS REPORT, ITS CONTENT, AND ANY ASSOCIATED SER-
VICES OR MATERIALS SHOULD NOT BE CONSIDERED OR RELIED UPON AS FINANCIAL, INVESTMENT, TAX, LE-
GAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.

2

CODESPECT

3 Risk Classification

Severity Level Impact: High Impact: Medium Impact: Low
Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low
Likelihood: Low Medium Low Low

Table 1: Risk Classification Matrix based on Likelihood and Impact

3.1 Impact

− High - Results in a substantial loss of assets (more than 10%) within the protocol or causes significant disruption to
the majority of users.

− Medium - Losses affect less than 10% globally or impact only a portion of users, but are still considered unaccept-
able.

− Low - Losses may be inconvenient but are manageable, typically involving issues like griefing attacks that can be
easily resolved or minor inefficiencies such as gas costs.

3.2 Likelihood

− High - Very likely to occur, either easy to exploit or difficult but highly incentivized.

− Medium - Likely only under certain conditions or moderately incentivized.

− Low - Unlikely unless specific conditions are met, or there is little-to-no incentive for exploitation.

3.3 Action Required for Severity Levels

− Critical - Must be addressed immediately if already deployed.

− High - Must be resolved before deployment (or urgently if already deployed).

− Medium - It is recommended to fix.

− Low - Can be fixed if desired but is not crucial.

In addition to High, Medium, and Low severity levels, CODESPECT utilizes two other categories for findings: Informational
and Best Practices.

a) Informational findings do not pose a direct security risk but provide useful information the audit team wants to
communicate formally.

b) Best Practices findings indicate that certain portions of the code deviate from established smart contract develop-
ment standards.

3

CODESPECT

4 Executive Summary

This document presents the results of a security assessment conducted by CODESPECT for Kapan Finance. Kapan is a
decentralized lending aggregator enabling seamless interaction with multiple lending protocols through a single interface.

The scope of this audit includes the Cairo-based Kapan Finance contracts, specifically the router responsible for interacting
with protocol-specific gateways. These gateways interact with their corresponding lending protocols.

The audit was performed using:

a) Manual analysis of the codebase.

b) Dynamic analysis of programs, execution testing.

CODESPECT found ten points of attention, two classified as High, three classified as Medium, three classified as Low, and
two classified as Best Practices. All of the issues are summarised in Table 2.

Audit Conclusion

CODESPECT conducted a thorough security review of the Kapan Finance smart contracts. All severe issues
identified during the audit were addressed by the Kapan team. The fix review process, however, required several
rounds and included longer intervals between submissions. In addition, some fixes introduced notable logical
changes to the code.
Given these circumstances, we strongly recommend a secondary review to ensure the overall robustness and
security of the contracts.

Organisation of the document is as follows:

− Section 5 summarises the audit.

− Section 6 describes the system overview.

− Section 7 presents the issues.

− Section 8 contains additional notes for the audit.

− Section 9 discusses the documentation provided by the client for this audit.

− Section 10 presents the compilation and tests.

Issues found:
Severity Unresolved Fixed Acknowledged
High 0 2 0
Medium 0 3 0
Low 0 2 1
Best Practices 0 2 0
Total 0 9 1

Table 2: Summary of Unresolved, Fixed, and Acknowledged Issues

4

https://codespect.net/
https://www.kapan.finance/
https://www.kapan.finance/

CODESPECT

5 Audit Summary

Audit Type Security Review
Project Name Kapan Finance - Lending Aggregator
Type of Project Lending Aggregator
Duration of Engagement 6 Days
Duration of Fix Review Phase 3 Days
Draft Report June 26, 2025
Final Report September 2, 2025
Repository kapan
Commit (Audit) 83a7747df3350c2b23d747d52bdd998adbc8812d
Commit (Final) a717a11c18aa8fb9bbb3732b96dc04ad091ba69a
Documentation Assessment Medium
Test Suite Assessment Medium
Auditors Kalogerone, shaflow01

Table 3: Summary of the Audit

5.1 Scope - Audited Files

Contract LoC
1 kapan/packages/snfoundry/contracts/src/lib.cairo 18
2 kapan/packages/snfoundry/contracts/src/gateways/NostraGateway.cairo 303
3 kapan/packages/snfoundry/contracts/src/gateways/vesu_gateway.cairo 708
4 kapan/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo 343

Total 1372

5.2 Findings Overview

Finding Severity Update
1 Certain combinations of instructions can lead to token loss High Fixed
2 Vesu Gateway uses same the default pool id for every withdrawal High Fixed
3 Certain instruction combos create negative balancesAfter and will revert Medium Fixed
4 Repay may fail due to insufficient tokens approval Medium Fixed
5 The on_flash_loan function lacks a caller verification check Medium Fixed
6 Nostra positions are not getting tracked correctly Low Acknowledged
7 The on_flash_loan function does not take the repay_all flag into account when handling

the repay instruction
Low Fixed

8 get_flash_loan_amount may fail to return the correct amount Low Fixed
9 Revoke excess approvals in after_send_instructions Best Practices Fixed
10 Some transfers don’t confirm the return boolean Best Practices Fixed

5

https://github.com/StefanIliev545/kapan/
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d
https://github.com/StefanIliev545/kapan/tree/a717a11c18aa8fb9bbb3732b96dc04ad091ba69a
https://x.com/kalogerone
https://x.com/shaflow01
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/lib.cairo
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/NostraGateway.cairo
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/vesu_gateway.cairo
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo

CODESPECT

6 System Overview

The Kapan Finance protocol is a DeFi routing and aggregation protocol built on Starknet that enables seamless interaction
with multiple lending protocols through a unified interface. The protocol acts as an intermediary layer that abstracts protocol-
specific complexities, allowing users to execute complex cross-protocol strategies and optimise yields across different
lending platforms in atomic transactions.

The protocol follows a hub-and-spoke architecture centred around the RouterGateway contract, which serves as the primary
orchestrator for all lending operations. This central hub communicates with protocol-specific gateways that act as adapters
for underlying lending protocols and never holds any funds.

Currently, the system integrates with two major lending protocols through dedicated gateways: The Vesu Gateway interacts
with the Vesu lending protocol, supporting isolated lending pairs with variable interest rates, while Nostra Gateway connects
to the Nostra protocol, which offers pooled lending with interest-bearing receipt tokens. Users can interact with the system
through the RouterGateway contract for cross-protocol operations and complex strategies, or directly with individual protocol
gateways when operating within a single lending protocol.

The system defines four primary instructions that mirror standard lending operations. Each basic instruction contains three
essential components: the token address, the amount, and the user address:

− Deposit instructions add collateral to a lending position.

− Withdraw instructions remove collateral from lending positions.

− Borrow instructions create debt against deposited collateral.

− Repay instructions reduce or eliminate outstanding debt.

Beyond basic operations, Kapan Finance introduces two innovative instruction types that enable sophisticated chaining of
operations:

− Reborrow instructions dynamically borrow an amount determined by a previous operation in the same transaction.

− Redeposit instructions work similarly, depositing an amount determined by a previous operation.

Administrative functions in the Kapan Finance protocol are carefully scoped to configuration and expansion capabilities
without compromising user fund security. The RouterGateway owner possesses the critical ability to register new protocol
gateways, enabling the system to expand to additional lending protocols.

Each protocol gateway maintains its own administrative functions tailored to the specific requirements of the underlying
protocol. The Vesu Gateway administrator can add new supported assets, register additional lending pools, and configure
asset-pool relationships. Similarly, the Nostra Gateway administrator manages the mapping between underlying assets
and their corresponding debt and collateral token representations within the Nostra protocol.

6

CODESPECT

7 Issues

7.1 [High] Certain combinations of instructions can lead to token loss
File(s): RouterGateway.cairo

Description: Through the RouterGateway contract, users can choose to execute multiple sequential instructions on a single gateway.
Before executing the instructions, the contract checks its token balances. After execution, it calculates the balance changes and transfers
tokens to the user accordingly. However, since the pre-execution balance includes tokens that are meant to be input (e.g., for deposit or
repay), certain combinations of instructions may result in token loss.

1 fn before_send_instructions(...) -> Span<u256> {
2 let mut i: usize = 0;
3 let mut balancesBefore = array![];
4 while i != instructions.len() {
5 match instructions.at(i) {
6 LendingInstruction::Deposit(deposit) => {
7 let basic = *deposit.basic;
8 let erc20 = IERC20Dispatcher { contract_address: basic.token };
9 if should_transfer {

10 assert(erc20.transfer_from(get_caller_address(), get_contract_address(), basic.amount), 'transfer
failed');↪

11 }
12 assert(erc20.approve(gateway, basic.amount), 'approve failed');
13 let balance = erc20.balance_of(get_contract_address());
14 balancesBefore.append(balance);
15 },
16 LendingInstruction::Repay(repay) => {
17 let basic = *repay.basic;
18 let erc20 = IERC20Dispatcher { contract_address: basic.token };
19 if should_transfer {
20 assert(erc20.transfer_from(get_caller_address(), get_contract_address(), basic.amount), 'transfer

failed');↪

21 }
22 assert(erc20.approve(gateway, basic.amount), 'approve failed');
23 let balance = erc20.balance_of(get_contract_address());
24 balancesBefore.append(balance);
25 },
26 //...

Some combinations of instructions may lead to token loss. For example:

1. repay token1 with 100;

2. withdraw to retrieve 110 of token1;

Since 100 token1 tokens are input into the contract in advance, balanceBefore = [100, 100] During execution, 100 token1 tokens are
used to repay the debt, and the withdraw retrieves 110 tokens. balanceAfter = 110 - 100 = 10 Only 10 token1 tokens are sent to the
user, while the remaining 100 tokens remain locked in the contract.

Impact: Certain instructions combinations that use the same token can lead to permanent loss.

Recommendation(s): It is recommended that after_send_instructions fetch the token balances before any token inputs occur, and then
iterate through the instructions to execute token inputs.

Status: Fixed

Update from Kapan:

7

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo

CODESPECT

7.2 [High] Vesu Gateway uses the same default pool ID for every withdrawal
File(s): vesu_gateway.cairo

Description: During withdrawals from Vesu, users specify from which pool they want to withdraw using the context field in the Withdraw
struct:

1 fn withdraw(ref self: ContractState, instruction: @Withdraw) {
2 // ...
3 if instruction.context.is_some() {
4 let mut context_bytes: Span<felt252> = (*instruction.context).unwrap();
5 let vesu_context: VesuContext = Serde::deserialize(ref context_bytes).unwrap();
6 if vesu_context.pool_id != Zero::zero() {
7 pool_id = vesu_context.pool_id;
8 }
9 if vesu_context.position_counterpart_token != Zero::zero() {

10 debt_asset = vesu_context.position_counterpart_token;
11 }
12 }
13 // ...

Later, contract needs to call the correct vToken address to convert user’s shares to assets. However, the vToken retrieved is not from the
user’s specified pool_id:

1 fn modify_collateral_for(
2 ref self: ContractState,
3 pool_id: felt252,
4 collateral_asset: ContractAddress,
5 debt_asset: ContractAddress,
6 user: ContractAddress,
7 collateral_amount: i257,
8) -> UpdatePositionResponse {
9 // ...

10 // If this is negative, it means withdraw
11 if collateral_amount.is_negative() {
12 // @audit doesn't pass user's pool id
13 let vtoken = self.get_vtoken_for_collateral(collateral_asset);
14

15 let erc4626 = IERC4626Dispatcher { contract_address: vtoken };
16 let requested_shares = erc4626.convert_to_shares(collateral_amount.abs());
17 let available_shares = vesu_context.position.collateral_shares;
18 assert(available_shares > 0, 'No-collateral');
19 // ...
20 }

1 fn get_vtoken_for_collateral(
2 self: @ContractState, collateral: ContractAddress,
3) -> ContractAddress {
4 let vesu_singleton_dispatcher = ISingletonDispatcher {
5 contract_address: self.vesu_singleton.read(),
6 };
7 // @audit uses contract's default pool id
8 let poolId = self.pool_id.read();
9 let extensionForPool = vesu_singleton_dispatcher.extension(poolId);

10 let extension = IDefaultExtensionCLDispatcher { contract_address: extensionForPool };
11 extension.v_token_for_collateral_asset(poolId, collateral)
12 }

As a result, the wrong vToken address is used to retrieve information about the user’s available shares and final withdraw amount.

Impact: Users are unable to withdraw from their required pools as the transaction will revert if they don’t have any shares in the default
pool_id. Also, users who have shares in that pool will withdraw assets from that pool even if they specified another pool.

Recommendation(s): Pass users’ pool_id to the get_vtoken_for_collateral(...) function and use that to retrieve the extension
contract address.

8

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/vesu_gateway.cairo#L147

CODESPECT

Status: Fixed

Update from Kapan:

7.3 [Medium] Certain instruction combos create negative balancesAfter and will re-
vert

File(s): RouterGateway.cairo

Description: Through the RouterGateway contract, users can choose to execute multiple sequential instructions on a single gateway.
Before executing the instructions, the contract checks its token balances. After execution, it checks its token balances again and calculates
the difference from the first check. However, this difference may be a negative value, which will result in the transaction reverting since
balancesAfter is an array of u256.

For example:

1. Deposit 100 of token1;
2. Borrow 100 of token1;

Since 100 tokens are transferred into the contract in advance, balanceBefore = [100, 100]

Looking at balancesAfter calculation for these 2 instructions:

1 fn after_send_instructions(
2 ref self: ContractState,
3 gateway: ContractAddress,
4 instructions: Span<LendingInstruction>,
5 balancesBefore: Span<u256>,
6 should_transfer: bool,
7) -> Span<u256> {
8 let mut i: usize = 0;
9 let mut balancesAfter = array![];

10 while i != instructions.len() {
11 match instructions.at(i) {
12 LendingInstruction::Borrow(borrow) => {
13 let basic = *borrow.basic;
14 let erc20 = IERC20Dispatcher { contract_address: basic.token };
15 if should_transfer {
16 assert(
17 erc20
18 .transfer(basic.user, erc20.balance_of(get_contract_address())),
19 'transfer failed',
20);
21 }
22 let balance = erc20.balance_of(get_contract_address());
23

24 balancesAfter.append(balance - *balancesBefore.at(i));
25 },
26 ...
27

28 LendingInstruction::Deposit(deposit) => {
29 let basic = *deposit.basic;
30 let erc20 = IERC20Dispatcher { contract_address: basic.token };
31 let balance = erc20.balance_of(get_contract_address());
32 balancesAfter.append(*balancesBefore.at(i) - balance);
33 },
34 _ => {},
35 }
36 i += 1;
37 }
38 balancesAfter.span()
39 }

Here Borrow will first transfer the 100 borrowed tokens to the user and then track the balance of the contract. As a result, balanceAfter
here will be attempted to be 0 - 100 and transaction will revert.

Impact: Certain instruction combinations will have a negative value for balanceAfter and will result in the transaction reverting.

Recommendation(s):

Status: Fixed

Update from Kapan:

9

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo

CODESPECT

7.4 [Medium] Repay may fail due to insufficient tokens approval
File(s): NostraGateway.cairo, RouterGateway.cairo

Description: If the repay_all field is enabled in the repay instruction, it is expected to repay all outstanding debt. However, since this
value does not overwrite the amount field in the repay instruction within instructions.

1 fn before_send_instructions(...) -> Span<u256> {
2 //...
3 LendingInstruction::Repay(repay) => {
4 let basic = *repay.basic;
5 let erc20 = IERC20Dispatcher { contract_address: basic.token };
6 if should_transfer {
7 assert(erc20.transfer_from(get_caller_address(), get_contract_address(), basic.amount), 'transfer

failed');↪

8 }
9 assert(erc20.approve(gateway, basic.amount), 'approve failed');

10 let balance = erc20.balance_of(get_contract_address());
11 balancesBefore.append(balance);
12 },

Impact: It may result in a failed repayment in before_send_instructions due to insufficient approval or token transfer. For example, if
the repay_all flag is enabled but the repay.amount is arbitrarily set to a value like 1, then before_send_instructions will not transfer
a sufficient amount of tokens to the Router, and the Router will not approve enough allowance to the Gateway, resulting in the repay
operation failing.

Recommendation(s): In before_send_instructions, before transferring and approving tokens for a repay instruction, check if repay_all
is enabled. If it is, replace the operation amount with the corresponding total debt amount instead of using repay.amount.

Status: Fixed

Update from Kapan:

7.5 [Medium] The on_flash_loan(...) function lacks a caller verification check
File(s): RouterGateway.cairo

Description: The on_flash_loan function is the flash loan callback function. After receiving the flash loan, the contract executes instruction
logic within on_flash_loan. However, since there is no check to ensure that the caller is the flashloan_provider, a malicious actor can
arbitrarily call this function to bypass the ensure_user_matches_caller check and execute instructions.

1 fn on_flash_loan(...) {
2 assert(sender == get_contract_address(), 'sender mismatch');
3 println!("Received flash loan");
4 //...
5 }

Impact: This could potentially lead to the theft of tokens that users have approved for the Router contract — For example, if a user wants
to withdraw from NostraGateway via the router, they need to approve nibcollateral to the router. A malicious actor can check for such
approvals. Then call on_flash_loan to execute the withdraw instruction, and then call the deposit instruction to steal those tokens.

Recommendation(s): It is recommended to check whether the caller is the flashloan provider.

Status: Fixed

Update from Kapan:

10

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/NostraGateway.cairo
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo
https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo

CODESPECT

7.6 [Low] Nostra positions are not getting tracked correctly
File(s): NostraGateway.cairo

Description: In the Nostra protocol there are 2 types of collateral that users can have, Interest Bearing collateral and Non-Interest Bearing
collateral. It is possible that users hold both of these debt tokens simultaneously. However, the get_user_positions(...) function doesn’t
account for this scenario:

1 fn get_user_positions(
2 self: @ContractState, user: ContractAddress,
3) -> Array<(ContractAddress, felt252, u256, u256)> {
4 let mut positions = array![];
5 let mut i = 0;
6 while i != self.supported_assets.len() {
7 let underlying = self.supported_assets.at(i).read();
8 let symbol = IERC20SymbolDispatcher { contract_address: underlying }.symbol();
9

10 let debt = self.underlying_to_ndebt.read(underlying);
11 let collateral = self.underlying_to_ncollateral.read(underlying);
12 let ibcollateral = self.underlying_to_nibcollateral.read(underlying);
13

14 let debt_balance = IERC20Dispatcher { contract_address: debt }.balance_of(user);
15 let collateral_raw = IERC20Dispatcher { contract_address: collateral }
16 .balance_of(user);
17

18 // @audit User can have collateral in both the collateral and ibcollateral tokens
19 let collateral_balance = if collateral_raw == 0 {
20 IERC20Dispatcher { contract_address: ibcollateral }.balance_of(user)
21 } else {
22 collateral_raw
23 };
24 positions.append((underlying, symbol, debt_balance, collateral_balance));
25 i += 1;
26 };
27 return positions;
28 }

The function checks the user’s Non-Interest Bearing collateral balance and only if it’s 0 it checks for user’s Interest Bearing collateral
balance.

Impact: The function always returns the balance of 1 type of collateral that the user holds and never the total of both of them. If a user is
holding Non-Interest Bearing collateral tokens, his Interest Bearing collateral balance will not be accounted for.

Recommendation(s): Check for both of the balances and add them.

Status: Acknowledged

Update from Kapan: This one won’t be fixed in the release version as the UI does not support the nostra semantics. Users would be
required to go through their portal to setup the tokens correctly for transfering debt for the time being.

11

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/NostraGateway.cairo#L312

CODESPECT

7.7 [Low] The on_flash_loan(...) function does not take the repay_all flag into ac-
count when handling the repay instruction

File(s): RouterGateway.cairo

Description: In the on_flash_loan function, funds are obtained via flash loan to prepare for debt repayment. The total repay amount is
recalculated and the repay instruction is reconstructed. However, since the repay_all flag is not taken into account, some of these checks
may become invalid.

1 fn on_flash_loan(...) {
2 //...
3 for protocolInstruction in protocol_instructions {
4 for instruction in protocolInstruction.instructions {
5 if let LendingInstruction::Repay(repay) = instruction {
6 let repay = *repay;
7 repay_amounts.append(repay.basic.amount);
8 total_repay_amount += repay.basic.amount;
9 repay_count += 1;

10 }
11 }
12 }
13

14 // Calculate remaining amount to distribute
15 let remaining_amount = amount - total_repay_amount;
16 assert(remaining_amount >= 0, 'flashloan insufficient');
17 //...
18 for instruction in protocol_instructions {
19 //...
20 basic: BasicInstruction {
21 token: repay.basic.token,
22 amount: modified_amount,
23 user: repay.basic.user,
24 },
25 repay_all: false, // Force explicit amount
26 context: repay.context,
27

28 //...

When determining the flash loan amount, if the repay_all flag is enabled in the repay instruction, the flash loan amount is treated as the
full debt rather than repay.amount.

However, in the on_flash_loan function, during validation and instruction reconstruction, repay.amount is used without handling the
repay_all flag explicitly. This may lead to invalid or ineffective checks.

Impact: If repay_all is enabled and repay.amount does not match the full debt amount, then the move_debt function may fail.

Recommendation(s): The on_flash_loan function should consider the repay_all flag when accumulating amounts and reconstructing
repay instructions.

Status: Fixed

Update from Kapan:

12

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo

CODESPECT

7.8 [Low] get_flash_loan_amount(...) may fail to return the correct amount
File(s): RouterGateway.cairo

Description: In the get_flash_loan_amount(...) function, if a repay instruction has the repay_all flag enabled, the function will immedi-
ately return the flash loan amount for the gateway. However, the function does not consider whether the other ProtocolInstructions also
contains a repay instruction.

1 fn get_flash_loan_amount(...) {
2 let mut flash_loan_amount : u256 = 0;
3 let mut token : ContractAddress = Zero::zero();
4 for protocolInstruction in instructions {
5 for instruction in protocolInstruction.instructions {
6 if let LendingInstruction::Repay(repay) = instruction {
7 assert(*repay.basic.amount != 0, 'repay-amount-is-zero');
8 if *repay.repay_all {
9 let gateway = ILendingInstructionProcessorDispatcher { contract_address:

self.gateways.read(*protocolInstruction.protocol_name) };↪

10 return (*repay.basic.token, gateway.get_flash_loan_amount(*repay));
11 }
12 flash_loan_amount += *repay.basic.amount;
13 token = *repay.basic.token;
14 }
15 };
16 };
17 //...
18 }

Impact: If there are multiple ProtocolInstructions in the array and one of the repay instructions has the repay_all flag enabled, due to
the absence of the required amount in other repay instructions, the flash loan amount will be insufficient, causing the move_debt instruction
to fail.

Recommendation(s): When the repay_all flag is enabled, do not consider the flash loan amount required for just a single market.

Status: Fixed

Update from Kapan:

13

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/RouterGateway.cairo

CODESPECT

7.9 [Best Practice] Revoke excess approvals in after_send_instructions(...)

File(s): RouterGateway.cairo

Description: In after_send_instructions, there may be cases where not all tokens are used during repayment because repay.amount >
debt. The unused tokens will be transferred from the router to the user. However, the approval for these tokens granted to the gateway in
before_send_instructions has not yet been revoked.

1 fn after_send_instructions(ref self: ContractState, gateway: ContractAddress, instructions: Span<LendingInstruction>,
balancesBefore: Span<u256>, should_transfer: bool) -> Span<u256> {↪

2 // ...
3 LendingInstruction::Repay(repay) => {
4 let basic = *repay.basic;
5 let erc20 = IERC20Dispatcher { contract_address: basic.token };
6 let balance = erc20.balance_of(get_contract_address());
7 let diff = *balancesBefore.at(i) - balance;
8 balancesAfter.append(diff);
9 if basic.amount > diff {

10 let erc20 = IERC20Dispatcher { contract_address: basic.token };
11 erc20.transfer(basic.user, basic.amount - diff);
12 }
13 },
14 // ...
15 }

Impact: A user can manipulate the system to cause the router to grant an excessively large approval to the gateway. For example, if user1
only has a debt of 10 but sets repay.amount to 10,000 during repayment, the unused 9,990 tokens will be returned to user1. However, the
router’s approval of 9,990 tokens to the gateway remains in place.

While this may not have an immediate visible impact, it is recommended to revoke this unused approval to reduce the potential attack
surface in future updates.

Recommendation(s): It is recommended to revoke the router’s approval to the gateway for the refunded tokens.

Status: Fixed

Update from Kapan:

7.10 [Best Practice] Some transfers don’t confirm the return boolean
Description: Throughout the protocol, transfer(...) and transfer_from(...) functions returns are checked to be true. However, there
are a few instances where this doesn’t happen:

a. RouterGateway.cairo:
− In after_send_instructions(...) function under Withdraw and Repay instructions.

b. NostraGateway.cairo:
− In repay(...) function when transferring the underlying_token.

c. vesu_gateway.cairo:
− In repay(...) function when transferring any remainder amount.

Status: Fixed

Update from Kapan:

14

https://github.com/StefanIliev545/kapan/tree/83a7747df3350c2b23d747d52bdd998adbc8812d/packages/snfoundry/contracts/src/gateways/NostraGateway.cairo

CODESPECT

8 Additional Notes

This section provides supplementary auditor observations regarding the code. These points were not identified as individual
issues but serve as informative recommendations to enhance the overall quality and maintainability of the codebase.

− Supported assets are not enforced to the users instructions in vesu_gateway.cairo but they are used in the view/UI
functions which will potentially miss some user positions.

− The vesu_gateway.cairo contract should use the ISingletonV2 Interface as this is the one that it’s interacting with.

− In the vesu_gateway.cairo contract there is an inconsistency that repay(...) and borrow(...) functions require
that the instructions context is not empty, but the deposit(...) and withdraw(...) functions don’t.

15

CODESPECT

9 Evaluation of Provided Documentation

The Kapan Finance documentation was provided in a single form:

− Natspec Comments: Some parts of the code included Natspec comments, which explained the purpose of complex
functionality in detail and facilitated understanding of individual functions. However, some functionalities lacked
comments, and expanding documentation coverage would enhance the overall comprehensibility of the code.

The documentation provided by Kapan Finance offered valuable insights into the protocol, significantly aiding CODE-
SPECT’s understanding. However, the public technical documentation could be further improved to better present the
protocol’s overall functionality and facilitate the understanding of each component.

Additionally, the Kapan Finance team provided a technical walkthrough of the codebase and was consistently available
and responsive, promptly addressing all questions raised by CODESPECT during the evaluation process.

16

CODESPECT

10 Test Suite Evaluation

10.1 Compilation Output

% scarb build
Compiling snforge_scarb_plugin v0.45.0
Finished `release` profile [optimized] target(s) in 0.07s
Compiling kapan v0.0.1

warn: Unused import: `kapan::gateways::vesu_gateway::ByteArrayTrait`
--> \textbf{Kapan Finance}-Starknet/packages/snfoundry/contracts/src/gateways/vesu_gateway.cairo:2:23
use core::byte_array::ByteArrayTrait;

^************^

// The rest of the compilation output with warnings was omitted

Finished `dev` profile target(s) in 38 seconds

17

CODESPECT

10.2 Tests Output

% snforge test
Compiling snforge_scarb_plugin v0.45.0
Finished `release` profile [optimized] target(s) in 0.03s
Compiling test(kapan_unittest) kapan v0.0.1

Finished `dev` profile target(s) in 38 seconds
Collected 18 test(s) from kapan package
Running 0 test(s) from src/
Running 18 test(s) from tests/
[IGNORE] kapan_integrationtest::TestNostra::test_deploy_and_add_supported_assets
[IGNORE] kapan_integrationtest::TestNostra::test_deposit
[IGNORE] kapan_integrationtest::TestNostra::test_full_flow
[IGNORE] kapan_integrationtest::TestNostra::test_get_borrow_rate
[IGNORE] kapan_integrationtest::TestNostra::test_get_interest_rates
[IGNORE] kapan_integrationtest::TestNostra::test_get_user_positions
[IGNORE] kapan_integrationtest::TestNostra::test_withdraw
[IGNORE] kapan_integrationtest::TestRouter::test_move_debt_reverse
[IGNORE] kapan_integrationtest::TestRouter::test_router_setup
[IGNORE] kapan_integrationtest::TestRouter::test_vesu
[IGNORE] kapan_integrationtest::TestVesu::test_basic_withdraw
[IGNORE] kapan_integrationtest::TestVesu::test_borrow
[IGNORE] kapan_integrationtest::TestVesu::test_deposit
[IGNORE] kapan_integrationtest::TestVesu::test_get_all_positions
[IGNORE] kapan_integrationtest::TestVesu::test_get_borrow_rate
[IGNORE] kapan_integrationtest::TestVesu::test_get_supported_assets_ui
[IGNORE] kapan_integrationtest::TestVesu::test_repay
Deploying RouterGateway
Deploying NostraGateway
Deploying VesuGateway
Adding supported assets to NostraGateway
Pre-funding user address
Prefunded with token
Result: Result::Ok([1])
Result: Result::Ok([1])
Processing protocol instruction 0
Processed protocol instruction 0
Processing move debt
Requesting flash loan
Received flash loan
Processing protocol instruction 0
Processed protocol instruction 0
Processing protocol instruction 1
Processed protocol instruction 1
[PASS] kapan_integrationtest::TestRouter::test_move_debt (l1_gas: ~0, l1_data_gas: ~5536, l2_gas: ~1212493440)
Tests: 1 passed, 0 failed, 17 ignored, 0 filtered out

Latest block number = 1520484 for url = https://starknet-mainnet.public.blastapi.io/rpc/v0_8

The tests are ignored as they need to be executed separately due to endpoint restrictions.

10.3 Notes about Test suite
The Kapan Finance team provided a comprehensive test suite consisting of various unit tests that cover the majority of
flows and core functionalities. These tests help verify that individual components behave as expected in isolation.

CODESPECT identified an opportunity to enhance test coverage by introducing additional fuzz tests. These tests are de-
signed to validate functionality under unexpected or edge-case inputs, helping to ensure that critical assumptions identified
during the manual audit remain valid—thereby strengthening the protocol’s overall security and robustness.

Furthermore, CODESPECT recommends explicitly defining strict invariants that the protocol must uphold. Implementing
targeted tests to validate these invariants would provide continuous assurance that the system behaves correctly across
all conditions, further reinforcing both stability and security.

18

	About CODESPECT
	Disclaimer
	Risk Classification
	Executive Summary
	Audit Summary
	Scope - Audited Files
	Findings Overview

	System Overview
	Issues
	[High] Certain combinations of instructions can lead to token loss
	[High] Vesu Gateway uses the same default pool ID for every withdrawal
	[Medium] Certain instruction combos create negative balancesAfter and will revert
	[Medium] Repay may fail due to insufficient tokens approval
	[Medium] The on_flash_loan(...) function lacks a caller verification check
	[Low] Nostra positions are not getting tracked correctly
	[Low] The on_flash_loan(...) function does not take the repay_all flag into account when handling the repay instruction
	[Low] get_flash_loan_amount(...) may fail to return the correct amount
	[Best Practice] Revoke excess approvals in after_send_instructions(...)
	[Best Practice] Some transfers don't confirm the return boolean

	Additional Notes
	Evaluation of Provided Documentation
	Test Suite Evaluation
	Compilation Output
	Tests Output
	Notes about Test suite

